An Introduction to Bitcoin and Blockchain Technology

0xBitcoin

The first pure mined ERC20 Token for Ethereum, using the soliditySHA3 hashing algorithm. This is a smart contract which follows the original Satoshi Nakamoto whitepaper to form a fundamentally sound trustless currency. This combines the scarcity and fair distribution model of Bitcoin with the speed and extensibility of the Ethereum network. Thus, it is named 0xBitcoin or 0xBTC where 0x represents the Ethereum Network and ecosystem.
[link]

Grin Coin: a MimbleWimble protocol implementation

Grin is a simple, privacy-focused, scalable MimbleWimble protocol implementation. It aims to provide a fungible means of electronic transactions for all.
[link]

Simple, privacy-focused, scalable MimbleWimble chain implementation.

A subreddit for discussing the Grin cryptocurrency based on the MimbleWimble whitepaper.
[link]

PDF: Bitcoin research prediction algorithm using the location of the Sun

"Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012. My initial observation would conclude that there is a higher prevalence of a rise in BTC/USD when the Sun and Mercury are in different signs and a higher prevalence of a drop when the Sun and Mercury are in the same sign. Mercury retrograde periods, however, seem to reverse that pattern, making it to where the Sun and Mercury in different signs would drive the BTC/USD lower, while the Sun and Mercury in the same sign (during the retrograde) would bring it higher. Any of the stats marked below with an asterisk * are the dates that would be affected by the mercury retrograde" http://www.thedowcast.com/bitcoin-research-algorithm.html
submitted by thedowcast to wallstreetbets2 [link] [comments]

PDF: Bitcoin research prediction algorithm using the location of the Sun

"Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012. My initial observation would conclude that there is a higher prevalence of a rise in BTC/USD when the Sun and Mercury are in different signs and a higher prevalence of a drop when the Sun and Mercury are in the same sign. Mercury retrograde periods, however, seem to reverse that pattern, making it to where the Sun and Mercury in different signs would drive the BTC/USD lower, while the Sun and Mercury in the same sign (during the retrograde) would bring it higher. Any of the stats marked below with an asterisk * are the dates that would be affected by the mercury retrograde" http://www.thedowcast.com/bitcoin-research-algorithm.html
submitted by thedowcast to Wall_Street_Bets_ [link] [comments]

PDF: Bitcoin research prediction algorithm using the location of the Sun

"Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012. My initial observation would conclude that there is a higher prevalence of a rise in BTC/USD when the Sun and Mercury are in different signs and a higher prevalence of a drop when the Sun and Mercury are in the same sign. Mercury retrograde periods, however, seem to reverse that pattern, making it to where the Sun and Mercury in different signs would drive the BTC/USD lower, while the Sun and Mercury in the same sign (during the retrograde) would bring it higher. Any of the stats marked below with an asterisk * are the dates that would be affected by the mercury retrograde" http://www.thedowcast.com/bitcoin-research-algorithm.html
submitted by thedowcast to datasets [link] [comments]

PDF: Bitcoin research prediction algorithm using the location of the Sun

"Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012. My initial observation would conclude that there is a higher prevalence of a rise in BTC/USD when the Sun and Mercury are in different signs and a higher prevalence of a drop when the Sun and Mercury are in the same sign. Mercury retrograde periods, however, seem to reverse that pattern, making it to where the Sun and Mercury in different signs would drive the BTC/USD lower, while the Sun and Mercury in the same sign (during the retrograde) would bring it higher. Any of the stats marked below with an asterisk * are the dates that would be affected by the mercury retrograde" http://www.thedowcast.com/bitcoin-research-algorithm.html
submitted by thedowcast to investing_discussion [link] [comments]

PDF: Bitcoin research prediction algorithm using the location of the Sun

"Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012. My initial observation would conclude that there is a higher prevalence of a rise in BTC/USD when the Sun and Mercury are in different signs and a higher prevalence of a drop when the Sun and Mercury are in the same sign. Mercury retrograde periods, however, seem to reverse that pattern, making it to where the Sun and Mercury in different signs would drive the BTC/USD lower, while the Sun and Mercury in the same sign (during the retrograde) would bring it higher. Any of the stats marked below with an asterisk * are the dates that would be affected by the mercury retrograde" http://www.thedowcast.com/bitcoin-research-algorithm.html
submitted by thedowcast to Wall_Street_Bets_ [link] [comments]

PDF: Get acquainted with the bitcoin research prediction algorithm in Chapter 50 of Ares Le Mandat

PDF: Get acquainted with the bitcoin research prediction algorithm in Chapter 50 of Ares Le Mandat submitted by thedowcast to data [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Sobre Tibia, gold farmers y un caso de ayuda y éxito PT2. Son muy buenos consejos de cómo comenzar a programar profesionalmente

Una vez más, reconocimiento al autor original de los post International-Unit-8
Hello,

I have gotten so many replies and messages since my last post in this thread, that I can't answer them all individually. Previous topic:

https://www.reddit.com/TibiaMMO/comments/h8tu5u/a_great_tip_for_brazilians_venezuelans_and_othe

It has been shared on multiple subreddits so I have no idea where to even post this. But I'd like to come up with a follow-up thread with some more information. The internet is the most powerful tool that mankind has ever invented. You have the ability to reach thousands, millions and even billions of people with just a computer and some internet access.

If you're on this subreddit, chances are you're already playing Tibia and you already have a computer and internet access. It doesn't need to be the best internet, but as long as websites will load (eventually) you are good to go.

In this topic I will go more in-depth on web development and software engineering. If you have a very slow internet connection, you may want to look into web development instead of software development. An application/software is much heavier (larger file size) than a website. And most developer jobs require that you send and download files, back and forth, between you and your company's server. So if you feel like your internet is too slow to send a lot of files - do not worry! There are plenty of jobs.

First, I will go through some more details on how to learn web development and software development. After that, I will list a few other kinds of jobs that you can do remotely. These types of jobs can be done from anywhere in the world as long as you have internet access.



Part 1: Some languages you should learn

What is web development? Well, it can be a lot of things. You perhaps make websites for shops/restaurants/hair dressers/dentists, or you work for a big company and work on their web application, like Outlook, Discord or Spotify (which can all be accessed via a browser: their web app). You can also work with design and user experience, instead of programming. Being a web developer can mean so many different things, it's impossible to name them all. But most web developers are just developers: they program. They make websites, and they either sell the websites to companies (as a consultant) or you work full/part-time for a company.

I can not provide in-depth information about every single thing, but I can give you some pointers. The very basics any web developer should know is this:

HTML (HyperText Markup Language) - it's what almost all websites use as a foundation. This is not a programming language, but it is a markup language. If you want to build websites, you pretty much have to know this language. Don't worry though, it is easy. Not so much to learn. You can learn all about it in a few weeks.

CSS (Cascading Style Sheets) - it's what will add colors and shapes to your website. If you want to focus more on design (also known as front end development) then this is where you want to gain a lot of knowledge.

Python - A very simple language to learn. This language is very often the first programming language that developers start using. You can use it for a lot of things. This language is used in the back of a lot of websites. Google has been using Python for years and still is. It's great for web scraping and making web requests. If you want a language to practice your algorithms, then this language is awesome.

PHP - This used to be a very popular language, but not so much these days. However, it is very good to know how this works because it's very simple to learn and also very functional in some cases. If you want to transmit or withdraw information from a database to your website, then this (in combination with SQL) is a great way to do so. Whenever you make a login system or a contact form, the data must be sent somehow to a recipient or a database. PHP will help you do that. It is a server-side language, which means it will run in the back of the website.

SQL - To be able to communicate with databases (for example: save data, update data, or insert data) you can use different languages for that. But SQL is probably the most widely used language for this. It is basically just a bunch of commands that you tell your website or app to do. If you have a web shop for example, you will need a database to store all your product information in. You can for example use MySQL as your database and then use the SQL language to extract data from your database and publish it as a list of products on your website.

JavaScript - Perhaps the most powerful language at the moment. Anyone who is good at JavaScript will be able to learn most other modern programming languages. In recent years, the demand for good JavaScript developers has skyrocketed. It's because more applications are becoming web based, and JavaScript is probably among the most useful languages to use. You can use it for so many things. Previously JavaScript was only being run on the client side of the website (that means in the user's browser). But in recent years, there has been massive development of this language and you are now able to build servers, connect to databases and do very powerful web applications using just this language. A great tutorial for JavaScript was made by Tony Alicea: https://www.youtube.com/watch?v=Bv_5Zv5c-Ts This video is "just" 3.5 hours, but it's the intro. There is a much longer version of it, and you can download it for free if you search for it. Just find it as a torrent and watch it. It's probably the best tutorial I have seen for JavaScript.

C# - It's pronounced as "C Sharp". This language has been dominating the software engineering market for decades at this point. Everyone loves it. It's relatively easy to learn and you can build a lot of stuff in C#. It's very much like JavaScript, but focuses more on application development rather than website development. I would however try to avoid learning this language if you have very slow internet, since you will most likely be sending a ton of files back and forth. But if application (computer & phone) is your thing, then this language is great. There are so many tutorials on this, but there is 1 channel on YouTube which teaches a lot of the basics in C# (and many other languages) and that channel is called ProgrammingKnowledge. Sure, his C# videos may be old now but most of it is still relevant and useful. You will learn a lot by watching his videos. It's always good to start from the beginning and then when you're familiar with that, you can learn more about the recent updates in C#. https://www.youtube.com/watch?v=V2A8tcb_YyY&list=PLS1QulWo1RIZrmdggzEKbhnfvCMHtT-sA

Java - This is pretty much 90% identical to C# as I wrote above. Widely used, relatively easy to learn the basics and there's plenty of jobs. If you like making android apps, this language is for you.



Part 2: Technologies and useful tools

To become a web developer you will need a few tools. You need a text editor, a FTP client, a SSH client and some other things. Also a good browser.

Text editor: Visual Studio Code, Atom, Sublime Text, Brackets - There are many different text editors but at the moment, I highly recommend Visual Studio Code. It has so many built-in features it's honestly the only thing you may need.Don't forget to install Notepad++ as well - this very basic editor is so handy when you just quickly need to edit some files.

File archiving: WinRar, 7-Zip - You need some way of archiving projects and send it to your customer or employer. These are basic tools anyone should use. I personally use Winrar.

FTP (File Transfer Protocol): FileZilla - This tool will allow you to connect to your website's file manager and upload your files to it. There are many tools for connecting to an FTP server but this is the most popular one, it's simple and it works great.

VPS (Virtual Private Server): Amazon Web Services, Google Cloud - If you want to practice building web applications or want to host your own website as a fun project, it's great to use a VPS for that. Both Amazon and Google offers 365 days of free VPS usage. All you need is a credit card. However, they will not charge you, as long as you stay below the free tier limit. A VPS is basically a remote computer that you can connect to. I highly recommend that, if you have a slow internet connection. Those VPS-servers (by Amazon and Google) usually have 500mbit/s internet speed, which is faster than most countries in the world. You simply connect to them via Remote Desktop, or by SSH. Depending on what type of server you are using (Windows or Linux).

SSH (Secure Shell): Solar-PuTTY, PuTTY - If you for example have a web server where you store applications and files, a great way to connect to it is by using SSH. PuTTY is pretty much the standard when it comes to SSH clients. But I really love the version created by SolarWinds. When you download that one, do not enter your personal details. Their sales people will call you and haunt you! Haha.

File Searching: Agent Ransack - When you have many files and try to locate a specific document or file, you may want to use something like Agent Ransack. Much faster than the traditional search feature in Windows and it is much more accurate.

IDE / Code Editor: Visual Studio - Great tool to use when you want to create applications in C# for example. Do not confuse this with Visual Studio Code. These are two very different tools. This tool (Visual Studio) is more designed for Windows applications. Not just websites. I only recommend getting it if you plan to make programs for Windows.

Web host & domain: NameCheap, Epik, SiteGround - If you develop websites on your own, or maybe want to create a portfolio website, you will need a domain name and web hosting. I have personally used all of these 3 and they are very cheap. NameCheap has some of the cheapest domains and great web hosting for a low price. Their support is also great. Same with SiteGround. And if you want to buy a domain anonymously (with Bitcoin for example), then you can use Epik. Low prices and great customer service on all these 3 websites.

Web Server: XAMPP, Nginx - If you plan to practice PHP, you will need to have a web server on your local computer. If you have Windows, I would highly recommend installing XAMPP (Apache). It is very easy to use for beginners. If you're on Linux, I would recommend Nginx. Also check our PhpMyAdmin if you want to quickly setup a MySQL database locally.Bonus tip: If you use Visual Studio Code to create websites in HTML, CSS and JavaScript: then install the extension "live server" and you can run your applications on a live server without setting it up yourself. Tutorial: https://www.youtube.com/watch?v=WzE0yqwbdgU

Web Browser: Mozilla Firefox, Microsoft Edge Insider, Google Chrome - You need one of the latest web browsers to create websites these days. Since I prefer privacy over functionality, I've always loved Firefox. But recently, Microsoft has been improving its new version of Edge a lot (based on Chromium) and it's also very popular. If you want all your personal details to be saved and have good tools for web development, then use Google Chrome. Don't forget to utilize the built-in developer tools. You can access it in any of these browsers by pressing F12.



Other things you may want to look into:

Web services, SSL certificates, Search Engine Optimization, Databases, API, Algorithms, Data Structures



Part 3: Learning platforms

https://www.youtube.com/

https://www.w3schools.com/

https://leetcode.com/

https://stackoverflow.com/



If you want to learn in-depth about algorithms, data structures and more. Then you can take a look at the curriculum of the top-tier universities of USA. Such as: UC Berkeley, Harvard and MIT. These courses are very hard and are specifically for people who want to become experts in software engineering. You can enroll some of them for free, like the one on Harvard. And by having a such diploma (which costs $90 extra) can get you a lot of job opportunities. You can enroll those courses if you want, but it can have a fee. But just take a look at what they are studying and try do their exercises, that is 100% free. Get the knowledge. It's mostly on video too! These course below are the very same courses that many of the engineers at Facebook, Google, Amazon, Apple, Netflix, Uber, AirBnb, Twitter, LinkedIn, Microsoft, etc. has taken. It's what majority of people in Silicon Valley studied. And it's among the best classes that you can take. These course are held by some of the world's best professors in IT.



UC Berkeley: CS 61a & CS 61b:

https://inst.eecs.berkeley.edu/~cs61a/fa19/

Video playlist here: https://www.youtube.com/watch?v=0_LryzvBxFw&list=PL6BsET-8jgYVAaK0jGVTWr9R5g7kSMQ8i

https://inst.eecs.berkeley.edu/~cs61b/fa19/

Videos: https://www.youtube.com/channel/UCNBSbBTFx8nFahcQyZOYOgQ



Harvard University: CS50 (free enrollment --- 90$ to get a certificate).

https://online-learning.harvard.edu/course/cs50-introduction-computer-science



MIT (Massachusetts Institute of Technology): 6.006

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/

Held by Erik Demaine. One of the best - if not THE best - professor at MIT. Just look at this resume. It's almost 50 pages long! https://erikdemaine.org/cv.pdf



Part 4: Finding jobs

https://www.linkedin.com/

https://marketing.hackerrank.com/

https://www.glassdoor.com/index.htm

Facebook groups for web developers, freelancing, remote work, etc.

Portfolio / Code Sharing / Source Control:

https://github.com/



Part 5: Other types of jobs you can work with (remotely) - with/without coding experience

SEO (Search Engine Optimization)

Translations (Spanish/Portuguese, etc.)

Affiliate Marketing (look into Clickbank.com - and use Facebook Ads to promote products)

Design (web design, photo design, etc.)

Copywriting (write sales letters for companies)

Database manager (monitor and administrate a company's database)

YouTube - make YouTube videos to gain views. Views = Money.

Dropshipping (use Shopify.com for example) and sell products in a webshop. Benefit with dropshipping is that you don't personally store the products.

Customer support

more...? Banking, economics, etc.



You can find information about all of the things I have mentioned by using YouTube or Google search.

Hope it helps.



And I hope that in 1 year, there will be at least some new web developers in Brazil, Venezuela and other countries in South America.
submitted by jesuskater to memezuela [link] [comments]

ACIS-mining and its 3 best algorithms

ACIS-mining and its 3 best algorithms
Hello. 👋🏻 Today we will tell you about ACIS-mining and its 3 best algorithms.
📌 With the advent of ASICs for mining, it became possible to mine Bitcoin in much larger quantities than using video cards. ASIC is an integrated circuit specialized to solve a specific problem, in our case, only for bitcoin mining. These schemes are many times more profitable than video cards, because with more power (hash calculation speed) they consume much less energy. This served as a good reason to create a cryptocurrency mining business.
📌 In bitcoin and other blockchain systems, the complexity of mining depends on how quickly the miners find the block. Compared with the GPU and CPU, specialized #ASIC miners solve #PoW puzzles better and are therefore able to quickly find new blocks.
📌 Since PoW is still the preferred mining consensus mechanism, we propose to take a multiple algorithm approach. Instead of trying to use algorithms which are ASIC resistant, we propose to use algorithms which have had ASIC miners for quite some time. These are: #SHA256, #Scrypt, and #X11.
🔹 The SHA-256 algorithm has a number of advantages over other information protection technologies. Over the years of use in the cryptocurrency industry, he has shown his resistance to various hacking attempts.
🔹 Scrypt is a cryptocurrency mining algorithm that was previously interesting to many single miners in view of its resistance to the so-called “hardware attack”. The speed of creating blocks in a Scrypt-based blockchain is about 30 seconds. The hashrate, like Ethash, is measured in Megahash per second. Scrypt, first of all, became popular due to its use in Litecoin #cryptocurrency.
🔹 X11 is an encryption algorithm in which eleven are used instead of one function. This means that this technology can provide a high degree of security, because in order to harm the system, an attacker will have to crack all 11 functions, which is very unlikely, because the changes made will be visible after breaking the first function, and developers will have a lot of time to protect the system before the hacker reaches the eleventh function.
Since these miners are already in wide use, the distribution of mining should be fair and even. Furthermore, the use of three different algorithms results in a far less chance of any single person gaining a majority hash rate share. Lastly, we use the Multishield difficulty adjustment algorithm to prevent difficulty spike issues resulting from burst mining.
Read more about PYRK mining solutions here: https://www.pyrk.org
Read our Whitepaper to know more about the project:
https://www.pyrk.org/Pyrk-Whitepaper.pdf
https://preview.redd.it/rxmlr7wt1k251.png?width=1200&format=png&auto=webp&s=162f9ddaacb3cf3e137638464a208bdf25e50a21
submitted by VS_community to pyrk [link] [comments]

One of Wright's claims about me potentially demystified

On a number of occasions Wright has claimed that I was working with the Australian Tax Office (ATO). This is not true and seemed like quite a bizarre claim, especially since to the best of my knowledge most of their investigations of him occurred before I'd ever heard of Wright.
After he started making this allegation I said in public that I'd be happy to help the ATO bring this obvious scammer to justice, but AFAIK I've never heard from them.
The ATO ruled against Wright due to his false testimony, forgeries[1], and fraudulent tax filings. In the large ATO document explaining their decision there was an illuminating footnote on page 22:
... 121. Both [PGP keys] were created using the preferred has[h] algorithm 8,2,19,11, which was non-existent in the PGP code base until 9 July 2009. C123.
(Text in square brackets is mine)
I assume C123 is a citation to an appendix but the appendices don't appear to be included. Other than some typographic mangling this appears to be the one of the things I immediately pointed out to debunk Wright's obvious forgeries very shortly after they were presented in public.
I wasn't the only person to independently notice this, I was probably not even the first. But my post on it was cited in the media. It's possible that this article or one of the community posts were what tipped the ATO off to this particular bit of evidence. It's also possible that they discovered it independently as several other people have.
Wright seems to be continually shocked when people see through his really incompetent and sloppy fraud. It's not really a surprise that he thinks that when two parties say the same things that they're colluding: After all, in his life of constant lies and implausible fabrications the only way him and his conspirators can manage to respond consistently is through collusion. Unfortunately for Wright truth has an inherent consistency that lies lack.
[1] Forgeries is kind of an understatement: he sent the ATO badly forged email communication with other ATO staff, among many other outrageous stunts.
submitted by nullc to bsv [link] [comments]

PYRK ecosystem and its uniqueness

PYRK ecosystem and its uniqueness
Hi, everyone! 👋🏻 Today we will tell you a little bit about the PYRK ecosystem.
As many of you might know, blockchain ecosystems are the groups of actors who interact with one another within the world of blockchain and with the surrounding off-chain world. You can ask why do we need that? This is why.
First of all, it helps to build many technical and technological solutions. It provides an ability to build partnerships. Joining the network you’ll be able to enter the international market. And, of course, environmental development helps you to improve your business reputation and your status.
📌 PYRK is a privacy-centric cryptographic currency based on the work of Bitcoin, Dash, and Digibyte.
📌 Many modern cryptocurrencies use a single algorithm Proof-of-Work mechanism, which can lead to 51% attack avenues on currencies. Instead of trying to use algorithms which are ASIC resistant, we propose to use algorithms which have had ASIC miners for quite some time. These are: SHA256, Scrypt, and X11. Thus, there is a far less chance of any single person gaining a majority hash rate share.
📌 Moreover, PYRK uses the Multishield difficulty adjustment algorithm to prevent difficulty spike issues resulting from burst mining. MultiShield is designed to let the difficulty "fall" very fast, in order that the chain doesn't freeze.
💡 A future improvement planned for Pyrk is Simple Tokens. This is similar to the SLP (Simple Ledger Protocol) used by Bitcoin Cash.
💪🏻 As you can see, the system is growing and developing very fast. Become a part of our community! Take advantage of our inventive and growing ecosystem!
Check out PYRK website to know more about the project: https://www.pyrk.org
Read the Whitepaper to learn more about PYRK ecosystem: https://www.pyrk.org/Pyrk-Whitepaper.pdf
https://preview.redd.it/zdxbw99zpk051.png?width=1200&format=png&auto=webp&s=6f759439a58bcf5aaaad074dc20f870ce204dd05
submitted by VS_community to pyrk [link] [comments]

Proof-of-Work vs Proof-of-Stake algorithms and why PYRK uses PoW

Proof-of-Work vs Proof-of-Stake algorithms and why PYRK uses PoW
Hello, community! 👋🏻 In this post, we will tell you about Proof-of-Work and Proof-of-Stake algorithms and why PYRK uses PoW.
🔗 A large part of 2019 was discussed in the discussion of the pricing of the key digital assets, which slightly increased, slightly higher than before. 2020 began with the confirmation of the bullish trend, taking into account the increase in bitcoin in January at Z0%. At the same time, the process between Proof-of-Work and Proof-of-Stake (proof of share) did not complete. Emotional gain increased by the approximation of the Ethereum switch from the PoW protocol to the PoS protocol.
🔗 Coins with PoW support are mined in the sector, having a colossal share of 82.92% and a cumulative market capitalization of about $ 213, 5 billion. The predominance of market capitalization on PoW is ensured by the fact that the bitcoin dodu accounts for 65% of the total market capitalization of crypto assets. Its main advantages of PoW are protection against DoS attacks and the low impact of the miner’s cryptocurrency share on mining opportunities.
🏆 PYRK Proof-of-Work triple algorithm
✅ Since PoW is still the preferred mining consensus mechanism, PYRK proposes to take a multiple algorithm approach. Instead of trying to use algorithms which are ASIC resistant, we propose to use algorithms which have had ASIC miners for quite some time. These are: SHA256, Scrypt, and X11.
✅ Since these miners are already in wide use, the distribution of mining should be fair and even. Furthermore, the use of three different algorithms results in a far less chance of any single person gaining a majority hash rate share. Lastly, we use the Multishield difficulty adjustment algorithm to prevent difficulty spike issues resulting from burst mining.
✅ The idea of multi-algorithm originated in Digibyte. Splitting the mining into three different algorithms effectively splits the amount of work performed by each algorithm to 33% of the total network hashrate. This means that any pool or miner mining can only achieve 33% of the total hashrate even if they are mining 100% of the hash rate of a single algorithm. It is an exceedingly unlikely case that a single miner attains 100% of the hash rate of a single algorithm, especially as the number of miners and pools grow with the network. The triple algorithm approach helps to further protect the network from bad actors while also providing the preferred Proof-of-Work mechanism.
Read more about PYRK project and its Proof-of-Work triple algorithm in our Whitepaper: https://www.pyrk.org/Pyrk-Whitepaper.pdf
And on our website: https://www.pyrk.org
https://preview.redd.it/jmkjz2am47051.png?width=1200&format=png&auto=webp&s=8c4080d36769f7a953fdb436510e97b646e78d1d
submitted by VS_community to pyrk [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

AT2: Asynchronous Trustworthy Transfers

AT2, a fairly new unknown tech to create a decentralized asset transfer system without blockchain.
This week there was an article @ www.computing.co.uk. See below.
link: https://www.computing.co.uk/feature/4017118/at2-answer-cryptocurrency-energy-performance
AT2 paper: https://arxiv.org/pdf/1812.10844.pdf

Could AT2 be the answer to cryptocurrency's energy and performance problems?
Blockchains are slow, wasteful and ill-suited for digital currencies, say researchers who believe they've found a better way
Blockchains solve a hard problem: how to ensure consensus across a distributed, decentralised network, where messages arrive out of order if at all, where individual nodes may fail, and where a certain proportion may be actively malicious.
The original blockchain, bitcoin, was designed to support a novel digital currency, and the issue its consensus algorithm solved was preventing double-spend. It also successfully introduced game theory for security: adversaries would have to spend more money on an attack than they could expect to gain financially. All this and the original protocol was just a few hundred lines of code.
But this achievement came at a high cost in terms of energy use and performance.
With bitcoin, a new leader is required to verify each block of transactions, that leader being the first device to complete a computationally heavy challenge (Proof of Work, PoW). As a result, the blockchain's throughput is painfully slow at around seven transactions per second (Visa claims it can do 56,000) and the whole process is massively wasteful of energy. These drawbacks have been surmounted, to some degree, in newer blockchain designs using overlay networks, sharding and different types of "proofs of" and by non-blockchain directed acyclic graphs (DAGs), but each requires tradeoffs in terms of centralisation, complexity or security.
A group of researchers led by computer scientist Professor Rachid Guerraoui of Swiss University Ecole Polytechnique Fédérale de Lausanne (EPFL) decided to look afresh at the problem. Is this gargantuan security apparatus, in which every node in a network of thousands or millions must come to a consensus about the ordering of events, really necessary everytime someone makes a purchase? Could a leaderless mechanism be applied to the problem instead? If so, could it be guaranteed to be reliably consistent, even when a certain number of nodes are malicious or faulty (Byzantine)?
The headline answer, published in an initial paper last year, is that network-wide consensus is overkill for simple asset transfers. If cryptocurrencies could be rebooted, all the fossil fuels burned by miners of bitcoin and its clones could be left in the ground and Visa-level transaction speeds could be achieved without any loss of security or reliance on centralised control. As compact as Satoshi's original bitcoin protocol itself, the few hundred lines of code that make up their Asynchronous Trusted Transfers (AT2) algorithm could solve some of the tricky problems that have plagued decentralised token-based networks from the off.
AT2 can be used to validate transactions within two different decentralised networking scenarios: (1) permissioned or small unpermissioned networks, and (2) global scale unpermissioned networks. In the first case, the algorithm uses quorum for validating actions, whereby a certain proportion of the network's nodes must agree an action is correct before it can take place. The second scenario, networks made up of very large number of machines (nodes), uses probabilistic sampling. Instead of asking all nodes it checks a number of randomly selected nodes for their viewpoint. This is much more efficient and scalable than the deterministic quorum but carries a tiny (ca. 10-15) possibility of failure.
Doing away with network-wide consensus means AT2 sidesteps the bane of decentralised networks, the FLP Impossibility - the theory that in a fully asynchronous system, a deterministic consensus algorithm cannot be safe, live and fault-tolerant.
Computing caught up with Matteo Monti, who worked on the statistical aspects of AT2, and by email with Guerraoui to find out more. We also spoke to David Irvine of networking firm MaidSafe, which has adopted AT2 to simplify its consensus process.

Incentivising improvements
We asked Monti (pictured) to summarise the innovation that AT2 brings to the table.
"What we noticed is that there's a specific subclass of problems that can be solved on a decentralised, distributed network without requiring consensus," he said. "The main use for consensus at the moment, cryptocurrency transactions, is part of that class. We can solve this using a weaker abstraction and in doing so you gain the ability to work in a completely asynchronous environment."
Bitcoin doesn't even solve consensus well. It solves eventual consensus which an even weaker abstraction, he added, whereas AT2 can guarantee strong eventual consistency. Another issue it tackles is PoW's incentivization model which means that improvements in technology do not translate into a better performing network.
"With bitcoin, the bottleneck is always electricity. If everyone doubles their computational speed it's not going to change the efficiency of the network. Everyone's competing not to compute but to waste energy."
In place of PoW, AT2 uses ‘Proof of Bandwidth', i.e. evidence of recent interaction, to verify that a node is real. Since it doesn't rely on consensus, the performance of AT2 should allow messaging speeds across the network that approach the theoretical maximum, and improvements in hardware will translate into better overall performance.

Security measures
Blockchains like bitcoin are extremely resilient against Sybil attacks; bitcoin is still running after all, in the face of unwavering opposition from powerful nation states and bankers. Sybil attacks are a major vulnerability in permissionless decentralised networks where anyone can join anonymously, but there are others too.
Monti said the most challenging aspect of designing the AT2 algorithm was distilling all the potential types of dangerous Byzantine behaviour into a manageable set so they could be treated using probability theory. As a result of studying many possible failure scenarios, including Sybil, the algorithm is able to quickly react to deviations from the norm.
Other security features flow from the fact that each network node needs to know only a limited amount about its counterparts for the system to function. For example, the randomness used in sampling operations is generated locally on the calling device rather than on the network, making this vector hard to utilise by an attacker looking to influence events.
Signals are passed across the network via a messaging system called Byzantine Reliable Broadcasting (BRB) a gossip-based method by which nodes can quickly and reliably come to an agreement about a message even if some are Byzantine.
As a result of these features, AT2 does not rely on economic game theory for security, said Monti.
"I'd go as far as saying that the moment you need to implement an economic disadvantage to attacking the system, it means that you failed to make it impossible to attack the system. We don't care about your interests in attacking the system. What we want to achieve is a proof that no matter what you do, the system will not be compromised."

‘Crypto-Twitter'
AT2 starts with the simple idea that rather than requiring the whole network to maintain a time-ordered record of my transactions (as with a blockchain or DAG), the only person who needs to keep that tally is me.
If I decide to spend some money, I merely announce that fact to the network over BRB and this request will be held in a memory snapshot escrow. Depending on the network type, a representative sample or a quorum of other nodes then check my balance and inspect my ordered transaction history to ensure that the funds haven't already been spent (each transaction has a unique sequential ID) and provided all is correct the transaction is guaranteed to go through, even if up to a third of those validators are malicious. If I try to cheat, the transaction will be blocked.
Monti likens a wallet on an AT2 network to a social media timeline.
"What we've proved, essentially, is that you can have a cryptocurrency on Twitter," he explained.
"A payment works in two steps. First, there's a withdrawal from my account via a tweet, then the second step is a deposit, or a retweet. I tweet a message saying I want to pay Bob. Bob then retweets this message on his own timeline, and in the act of retweeting he's depositing money in his account.
"So everyone has their own independent timeline and while the messages - my tweets - are strictly ordered, that's only in my own timeline; I don't care about ordering relative to other timelines. If I try to pay someone else, it will be obvious by the sequence of tweets in my account, and my account only, whether I can perform that payment.
"In contrast, consensus effectively squeezes all of the messages into a unique timeline on which everybody agrees. But this is overkill, you don't need it. We can prove that it still works even if the ordering is partial and not total, and this enables us to switch from consensus to reliable broadcast."
But of course, nothing comes for free. AT2 can verify exchanges of tokenised assets, but aside from arrangements between a small number of opted-in parties, it does not have the ability to support smart contracts of the type that are viable on ethereum and other blockchains, because this does require network-wide consensus. Guerraoui said his team is working on "refinements and extensions" to support such functionality in the future.

Early adopters
AT2 is still pretty ‘cutting edge'. Three papers have been accepted for peer review the latest published in February, but it provides the sort of efficiencies and simplifications that could bring real progress. Guerraoui said AT2 has "received interest from many groups including companies ‘selling' blockchain approaches, as well as companies and organisations using such approaches".
One organisation that has already picked up on the potential of AT2 is Scotland's MaidSafe, creator of the SAFE Network. MaidSafe is already using AT2 to replace its Parsec consensus algorithm, which testing showed was indeed overkill for many network operations. CEO David Irvine said he and his colleagues came across AT2 while working on another way of propagating changes to data without consensus, conflict-free data replicated types (CRDTs), promptly forked the code and started to apply it.
SAFE, currently in Alpha, is a sharded network, meaning it's subdivided into small semi-autonomous sections. On a network level, the way it works is that trusted 'elder' nodes vote on a requested action then pass instructions to other sections to carry it out.
AT2 allows the initial task of accumulating the votes for an action, which had been done by the elders using a consensus algorithm, to be moved off the network and onto the requesting client which is much more lightweight and efficient. Once a quorum of votes has been gathered, the client simply resubmits the request and the elders will ensure it's carried out. The system is much simpler and should be more secure too. "It's 200 lines of logic compared to 15,000 for a start," Irvine said.
AT2 is not just used to validate token transfers. By the same mechanism, it can also be used to authorise requests to store or change data. Together with CRDTs, which guarantee that such changes cannot fail, this makes for a very tight and efficient ship, said Irvine.
"AT2 is for us a missing link. The difficulty of several nodes agreeing is simplified by the initiator taking on the effort of accumulating quorum votes. It seems so simple but in fact, it's an amazing innovation. It certainly falls into the category of 'why didn't I think of that?'."
submitted by ZaadNek to CryptoTechnology [link] [comments]

Blockchain in Healthcare: Bridging Trust in response to COVID-19

Blockchain in Healthcare: Bridging Trust in response to COVID-19
Link to our article: https://block.co/blockchain-in-healthcare/
There’s never been a better time to provide proof-of-health solutions in the healthcare system globally. While it’s difficult to comprehend the significance of the role that technology may offer in such difficult times, essentially it can be nailed down to its basic concept of simplifying work and coordinating activities, which could have helped avoid the worst crisis people have experienced in their lifetime. If the healthcare system would adopt technological innovations in the early stages, it could have benefited and saved many lives.
Although the healthcare system has traditionally been slow in embracing the latest digital solutions, just like many other industries, we’ve observed in a previous article how the Covid-19 crisis has accelerated the adoption of digital technologies on a global scale in several industries, including healthcare.
The latest webcast brought to the audience by Block.co hosted some high profile experts from the industry. They illustrated how blockchain especially, together with other technologies such as IoT, and AI could in the future help elevate prompt responses, and provide more secure and efficient storage of data, something that has been missed in the recent pandemic.
Ahmed Abdulla from Digipharm, Dr. Alice Loveys from EY, and Dimitrios Neocleous from VeChain were hosted by Georgina Kyriakoudes, one of the first in the world to hold an MSc in Digital Currency, founder of Dcentric.Health and creator of the permissioned blockchain ecosystem app called Aria, which aims to transform the patient healthcare experience by giving individuals full control of their medical records.
Blockchain’s benefits in healthcare are primarily identified by efficiency, specifically on the transfer of data, facilitation of goods transport via the supply chain, prevention of counterfeit medicines sale, secure storage, and exchange of data around ID management. The impressive projects all the webcast guests have developed in the industry enable just these features, from the digitization of patient records to storage and exchange of medical data as well as easier processing of funds.
https://preview.redd.it/7k85objjz1851.png?width=768&format=png&auto=webp&s=237293e731024ae8f50861682c434b04d7742e05
Ahmed Abdulla founded Digipharm with the idea of issuing tokens to allow patients to be in control of their medical records at all times. Moreover, tokens are issued to be paid for anonymously sharing personal medical data to help research; pay for healthcare based on how it has improved quality of life.
We have experienced a disparity in Covid-19 tests costs around the world. For instance, getting tested in Cyprus costs around €60 while in the US it may add up to a few thousand dollars. This is due to the way countries arrange payment setups from payers to providers. Blockchain empowers people to take ownership of their records and funds while providing transparency of processes. This is where blockchain can be robust, by increasing transparency and allowing the patient to secure money transfer and hold their own records”, stated Ahmed.
His work as blockchain advisor at the UN Economic Commission for Europe is helping set up standards for the blockchain ecosystem, namely how the system should be used safely, and in a way that benefits all stakeholders.
“I lead the blockchain and healthcare team at the UN center for trade facilitation and e-business where we developed a blockchain and trade facilitation white paper; the second phase will soon provide an advanced technology advisory board to advise private or public stakeholders on what’s the best technology to use. It might not always be blockchain, hence we first understand and then advise if the tech is right for them or not. Blockchain is clunky, expensive, and not always proper for the organization we work with”, continued the blockchain expert.
Most people may prefer public and permissionless blockchain because it has major advantages over a private and permissioned one. Transparency stands out for the way the ledger is shared and for due diligence becoming unnecessary as a result. This means costs are also cheaper, in the range of 100% lower. On the other hand, a public decentralized blockchain has a major disadvantage since no legal framework is laid out. This means uncertainty as there is still a grey area in the legal field that might create confusion.
Dimitrios Neocleous is Ecosystem Manager at VeChain Tech and directly supported digital and technological solutions provider I-DANTE with the creation of the E-NewHealthLife and the E-HCert for the Mediterranean Hospital of Cyprus. Both apps give patients control over their health records, improve medical data sharing, and increase hospital operational efficiencies by simplifying the process of visiting a hospital.
E-NewHealthLife is a complex ecosystem solution that starts from a patient’s visit to an emergency room. A card with the reason for a patient’s visit is issued; it gets time-stamped; the patient is sent to the waiting room; once the patient’s turn comes and the medical check is completed, the card is scanned and the visit is closed. Patients can digitally access all diagnoses that took place anytime at the hospital.
“The platform produces a digital health passport, which is an encrypted non-fungible card that patients can use to identify themselves automatically when registering at the hospital’s emergency room. The passport is stored within a mobile app called E-HCert, which keeps track of each patient’s medical data and can be shared as needed”, announced Dimitrios.
E-HCert App is a Covid-19 lab test electronic wallet and pushes up the results of a patient who’s been tested for COVID. It has been proven to be very successful so far; currently, 2000 people who transited through the Larnaca airport in Cyprus have downloaded the app. With time-stamped records, it’s able to provide data such as the day and time when the sample was collected, it offers immutability, security, and integrity of data.
https://preview.redd.it/kqq7jfgpz1851.png?width=940&format=png&auto=webp&s=2c9a121e0a4839125418db7ff61ae3957c3fff41
“Covid-19 showed a deficiency in healthcare. The spread of the virus could have been prevented if we had digitization of processes and transparency of data through blockchain, and transfer of data through an authorized share of records. An open permissionless decentralized blockchain helps bring ownership of medical records back to the patient, and that is not possible in a centralized system”, continued the VeChain representative.
Dr. Alice Loveys is EY ‘s healthcare blockchain leader in the US and has been at the forefront of emerging healthcare technologies for her entire career including being a pioneer in electronic health record adoption, health information exchange, and privacy and security.
She believes that “blockchain technology is like a plumbing system that brings clean and transparent trusted data that can be used. It’s not proper for a track and trace system as it invades privacy unless there is the consent from patients, in that case, blockchain transparent share of data would be extremely useful for medical research and testing”.
One problem we experienced during the crisis is the confusion that arose with divulged information and the frustration that comes with it. People do not understand anymore which information can be trusted; at first, it looked like COVID-19 symptoms were not dangerous, then it came out that they actually were. Masks were not useful at the beginning, then they suddenly became necessary.
“Blockchain could have prevented lockdown and economic crisis through data management in that a much faster response would have been provided to tackle misinformation because blockchain can help manage data from different sources”, continues Dr. Loveys. “Moreover, it’s a great way to protect the database. Instead of moving any private sensitive medical data through the more traditional digital systems, blockchain simply allows us to send an algorithm, encrypted data that safeguards the information. It’s not a great use as a database as it does not scale, therefore we would not be able to store information for billions of people in it. But for the data that is in the blockchain, using algorithms, makes it very convenient and secure”.
Another topic discussed during the webcast was the GDPR compliance for blockchain. GDPR (General Data Protection Regulation) was created before blockchain therefore it doesn’t account for decentralized technologies. Generally speaking, it all comes down to how the technology is used and what kind of data is incorporated in it. Timestamping data without invading anyone’s privacy, or timestamp of consented data, should determine no issue at all. This is what privacy by design stands for, taking human values into account in a well-defined manner throughout the whole process.
Block.co, powered by the University of Nicosia, is establishing itself as a global leader in the issuance of digital immutable and secure certificates timestamped on the Bitcoin blockchain. In the field of healthcare, it could include medical records, prescription issuance, insurance disputes, supply chain documentation, and any type of verifiable certificate that requires authenticity at its core.
For more info, contact Block.co directly or email at [[email protected]](mailto:[email protected]).
Tel +357 70007828
Get the latest from Block.co, like and follow us on social media:
✔️Facebook
✔️LinkedIn
✔️Twitter
✔️YouTube
✔️Medium
✔️Instagram
✔️Telegram
✔️Reddit
✔️GitHub
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

CYPHERIUM ENHACES BLOCKCHAIN TECHNOLOGY

OVERVIEW
Rarely has any technology such as blockchain attracted the public and media organisations. Institutions designed to catalyze the fourth industrial revolution are experimenting with technology, and investors have invested hundreds of millions of dollars in blockchain companies. This is a low-risk, experimental environment with error protection. Innovation is a combination of creativity and implementation. Ideas often must go through an evolutionary or cyclical phase before they are ready for commercialization. In fact, the cycle is so long that it is too expensive, inefficient in terms of time and money to generate and generate ideas, and in most cases almost never reaches commercial value. Thus, almost 99% of venture capital firms fail.
A fast growing technology that has come to enhance the blockchain technology is CYPHERIUM.

CHALLENGES FACING THE BLOCKCHAIN TECHNOLOGY
The Bitcoin framework is one of the most notable usage of blockchain innovations in circulated exchange based frameworks. In Bitcoin, each system hub seeks the benefit of putting away a lot of at least one exchanges in another square of the blockchain by comprehending a complex computational math issue, here and there alluded to as a mining verification of-work (POW). Under current conditions, a lot of exchanges is ordinarily put away in another square of the Bitcoin blockchain at a pace of around one new square like clockwork, and each square has an inexact size of one megabyte (MB). As needs be, the Bitcoin framework is dependent upon a looming versatility issue: as it were 3 to 7 exchanges can be handled every second, which is far underneath the quantity of exchanges handled in other exchange based frameworks, for example, the roughly 30,000 exchanges for each second in the Visa™ exchange framework. The most huge disadvantage of the Nakamoto accord is its absence of irrevocability. Conclusion implies once an exchange or an activity is performed on the blockchain, it is for all time recorded on the blockchain and difficult to turn around. This is fundamental to the wellbeing of money related repayment frameworks as exchanges must not be saved once they are made. For Bitcoin's situation, noxious on-screen characters can alter the exchange history given enough hash power, causing a twofold spending assault, given that there is sufficient motivator and money related practicality to complete such assaults. Given that mining gear leasing and botnets are at present predominant around the world, such an assault has become achievable.
Because of this absence of conclusiveness, Nakamoto accord must depend on additional measures, for example, confirmation of-work to forestall pernicious exercises. This hinders the capacity ofNakamoto accord to scale in light of the fact that a exchange must hang tight for various affirmations before coming to "probabilistic absolution".
In this way, wellbeing isn't ensured by Nakamoto agreement, and so as to secure the system, each exchange must experience extra an ideal opportunity to process. For Bitcoin's situation, an exchange isn't considered last until in any event six affirmations. Since Bitcoin can just process a couple of exchanges every second, the exchange cost is preposterously high, making it unreasonable for little installments like shopping for food or eatery feasting. This extraordinarily frustrates Bitcoin's utilization as an installment strategy in this present reality.

CYPHERIUM SOLUTIONS
Cypherium's exclusive algorithm, CypherBFT conquers burdens of the earlier craftsmanship by giving a circulated exchange framework including a gathering of validator hubs that are known to each other in a system however are undefined to the next system hubs in the system. As utilized thus, the gathering of validator hubs might be alluded to as a "Board of trustees" of validator hubs. In a few explanations, the framework reconfigures at least one validator hubs in the Committee dependent on the consequences of confirmation of-work (POW) challenges. As per some uncovered epitomes, a system hub that isn't as of now a validator hub in the Committee might be added to the Committee on the off chance that it effectively finishes a POW challenge. In such an occasion, the system hub may turn into another validator hub in the Committee, supplanting a current validator hub. In elective epitomes, a system hub may become another validator hub in the Committee dependent on a proof-of-stake (POS) accord. In yet another epitome, a system hub may turn into another validator hub in the Committee dependent on a verification of-authority (POA) agreement. In other elective exemplifications, a system hub may turn into a new validator hub in the Committee dependent on a mix of any of POW, POA, and POS accord.

In some revealed exemplifications, the new validator hub replaces a validator hub in the Committee. The substitution might be founded on a foreordained guideline known by all the hubs in the system. For model, the new validator hub may supplant the most established validator hub in the Committee. As indicated by another model, the new validator hub may supplant a validator hub that has been resolved to have gone disconnected, become bargained (e.g., hacked), fizzled (e.g., because of equipment breakdown), or in any case is inaccessible or not, at this point trusted. In the praiseworthy exemplifications, the circulated framework expect that for an adaptation to non-critical failure of f hubs, the Committee incorporates at any rate 3f +1 validator hubs.
Since the validator hubs in the Committee might be every now and again supplanted, for instance, contingent upon the measure of time required to finish the POW challenges, it is hard for vindictive outsiders to identify the total arrangement of validator hubs in the Committee at some random time.

BENEFITS OF CYPHERIUM BLOCKCHAIN TECHNOLOGY
Cypherium runs its exclusive CypherBFT accord, tied down by the HotStuff calculation, and can genuinely offer moment irrevocability for its system clients. With its HotStuff-based structure, the CypherBFT's runtime keeps going just 20-30 milliseconds (ms). A few affirmations are all that is required to for all time acknowledge a proposed obstruct into the blockchain, and it just takes 90ms for these affirmations to come to pass, making the procedure essentially quicker than the two-minutes required by EOS.
Cypherium's CypherBFT, which additionally uses HotStuff, doesn't have to pick between responsiveness and linearity. Cypherium's double blockchain structure incorporates the velocities of a dag, however its review for clients can occur a lot more straightforward and quicker, which adds to the accessibility of data and makes the data more decentralized.
As per some revealed epitomes, the validator hubs in the Committee may get exchange demands from other system hubs, for instance, in a P2P organize. The Committee may incorporate at any rate one validator hub that fills in as a "Pioneer" validator hub; the other validator hubs might be alluded to as "Partner" validator hubs. The Leader hub might be changed occasionally, on request, or inconsistently by the individuals from the Committee. At the point when any validator hub gets another exchange demand from a non-validator hub in the system, the exchange solicitation might be sent to the entirety of the validator hubs in the Committee. Further to the unveiled epitomes, the Pioneer hub facilitates with the other Associate validator hubs to arrive at an accord of an attitude (e.g., acknowledge or dismiss) for an exchange square containing the exchange solicitation and communicates the accord to the whole P2P arrange. In the event that the accord is to acknowledge or in any case approve the exchange demand, the mentioned exchange might be included another square of a blockchain that is known to in any event a portion of the system hubs in the system.
In conclusion, CYPHERIUM'S distributed smart-contracts block-chain is ideal for a good number of use cases which include (but not limited to):
Finance
Messaging
Voting
Notarization
Digital Agreements (Contracts)
Secure data storage
A.I (Artificial Intelligence)
IoT (Internet of Things
To know more about CYPHERIUM kindly visit the following links:
WEBSITE: https://cypherium.io/
GITHUB: https://github.com/cypherium
WHITEPAPER: https://github.com/cypherium/patent/blob/maste15224.0003%20-%20FINAL%20Draft%20Application%20(originally%200003%20invention%201)%20single%20chain%20in%20pipeline.pdf
TELEGRAM: https://t.me/cypherium_supergroup
TWITTER: http://twitter.com/cypheriumchain
FACEBOOK: https://www.facebook.com/CypheriumChain/
AUTHOR: Nwali Jennifer
submitted by iphygurl to BlockchainStartups [link] [comments]

What is Blockchain Technology?

What is Blockchain Technology?
The original article appeared here: https://www.securities.io/what-is-blockchain-technology/
Its been almost ten years since Satoshi Nakamoto first introduced Blockchain technology to the world in his 2008 Bitcoin Whitepaper. Since that time, these revolutionary networks have gained popularity in both the corporate and governmental sectors. This growth is easily explained when you consider that blockchain technology provides the world with some unique advantages that were previously unimaginable. Consequently, today, you can find blockchain technology in nearly every sector of the global economy.

What is Blockchain Technology?

A blockchain is a network of computers that share a distributed ledger across all network participants (nodes). This strategy is far different than say, fiat currencies that originate from a centralized authority figure. Importantly, this ledger keeps an unbroken chain of transactions since the birth of the network. This “chain” of transactions grows larger as new “blocks” of transactions are approved and added to it.
Bitcoin Whitepaper
In order to approve new transactions, each node works together with others to validate new blocks. Additionally, the nodes also validate the current state of the entire blockchain. In order for a new block of transactions to be added to the blockchain, they must receive approval from 51% of the network’s nodes. Nodes are also referred to as miners. In this manner, blockchain networks are decentralized networks that provide unmatched security to the world of digital assets.

Security via Decentralization

Decentralization is an important aspect of blockchain technology because it makes these revolutionary ledgers immutable and unalterable. In fact, since there is no centralized attack vector, hacking a blockchain is nearly impossible. The larger the blockchain network, the more secure the data on it remains.
For example, let’s look at the world’s largest blockchain, Bitcoin. Currently, the Bitcoin blockchain has over 10,000 active nodes located across the globe. This distribution means that in order for an attacker to alter even just one tiny piece of information on the blockchain, they would need to successfully hack 5,000+ computers at once.
While this task may not be impossible for the quantum computers of the future, it’s so unprofitable that it makes no sense to even attempt such a monumental task. Additionally, on top of successfully hacking 5000+ computers at once, an attacker would also need a supercomputer to recalculate the new blockchain transactions in time to introduce them into the network. It would literally be more affordable to create a new cryptocurrency from scratch.

Consensus Mechanisms

One of the reasons why blockchain networks are so secure is the integration of consensus mechanisms. Consensus mechanisms are cryptographic protocols that leverage the participants of a blockchain network in securing its data. In the case of Bitcoin, the Proof-of-Work (PoW) consensus mechanism is used.

Proof-of-Work (PoW)

The Proof-of-Work consensus mechanism was revolutionary to the world of cryptography when it was first introduced years prior by Adam Back in his Hashcash whitepaper. In the concept, Back describes the integration of a mathematical equation to the network’s security protocols. In this way, every computer can show “proof” of their work securing the network.

Miner Rewards

It’s important to understand that nodes receive a reward for their mining efforts. These rewards adjust automatically depending on the network’s difficulty and value. In the case of Bitcoin, miners originally received 50 Bitcoin for their efforts. Today, this seems like fortune, but back in 2009, Bitcoin was only worth pennies. As the value of the token rises and the network goes, the mining rewards shrink. Today, Bitcoin miners receive 6.5 BTC if they add the next block to the chain.

SHA-256

Notably, every node validates and secures the blockchain, but only one gets to add the next block of transactions to the network. To determine who the next miner is that gets to add this block, every computer competes in a mathematical race to figure out the PoW equation. In the case of Bitcoin, the equation is known as SHA-256. Importantly, the first SHA algorithm dates back to Hashcash. This early version of the equation was known as SHA-1.
Notably, the SHA-256 equation is so difficult that it’s easier and more efficient for your computer to just make random guesses rather than attempting to figure out the equation directly. The answer to the equation must begin with a predetermined amount of 0s. In the Bitcoin blockchain, the equation’s answer must start with four zeros. However, if the network’s congestion rises, so does the difficulty of these equations. This difficulty adjusts by the addition of another zero at the beginning of the required SHA-256 answer.
Similarly to traditional commodities such as gold, there are costs that are associated with the creation and introduction of these digital assets into the market. These random guesses utilize intense computational power. This power equates to real-world costs such as electricity bills. Studies have shown that securing the Bitcoin network can use more electricity than required by entire countries. Luckily, over 80% of Bitcoin’s power consumption comes from renewable sources such as solar or hydroelectric. This cost of mining also adds measurable value to each Bitcoin.

Miners

As Bitcoin began to gain in profitability, its network’s computing power expanded significantly. In the beginning, nodes, also known as miners, could mine for Bitcoin using nothing more than your home PC. Eventually, miners realized that graphic cards were far better at the repetitive guessing required to figure out the SHA-256 algorithm. This led to a computational race in the market.

ASIC

Eventually, large blockchain firms such as Bitmain introduced Application Specific Integrated Circuit (ASIC) miners into the equation. These purpose-built miners were thousands of times more efficient at guessing the SHA-256 algorithm than the GPUs and CPUs before them. Consequently, their introduction created a scenario in which the average miner now needed to invest thousands in mining equipment to stay relevant.

Mining Pools

Luckily, some creative minds in the field began to think of ways to level the playing field out again. They developed “mining pools.” A mining pool is a network of miners that all share computational power for the common goal of mining blockchain transactions. Importantly, mining pool participants receive a percentage of the reward based on their contributions to the network’s overall hash (computational power).
Importantly, over the last three years, there has been a push to move away from power-hungry consensus mechanisms such as PoW. This desire to secure blockchains in a more efficient manner has led to the development of some truly unique consensus mechanisms in the sector.

Proof-of-Stake (PoS)

The Proof-of-Stake mechanism does away with the difficult mathematical algorithms and instead utilizes a more psychological approach to securing the network. In a PoS blockchain, users don’t need to compete mathematically to add the next block to the blockchain. Instead, PoS users “stake” their coins via network wallets to secure the network. The way staking works is simple.
Keeping a certain amount of coins in your wallet allows you to participate in transaction validations. The more coins you stake, the more likely the chances are you get to add the next block of transactions to the network. In most PoS systems, a miner from those with the most tokens staked at the time receives the chance to add the blocks.
The advantages of a PoS consensus mechanism are immediately evident. For one, you don’t need to pour tons of resources into your network to keep it safe. Additionally, since nodes are chosen based on their amount of staked coins, there is never a scenario in which a node gains anything from validating incorrect transactions. Basically, a hacker would have to fully invest in the cryptocurrency prior to attacking the network. In this way, PoS systems create a huge deterrent to attackers.

The Future of Blockchain Technology

Blockchain technology has come a long way from its early days as a means to secure cryptocurrency networks. Today, blockchain technology has numerous uses across every type of industry imaginable. Specifically, blockchain programs have impacted the logistical, financial, and data security sectors in a major way.

Blockchain Technology Logistics

Blockchain logistical systems are more efficient and cost-effective to operate than traditional paper-based models. In fact, the immutable and unalterable nature of blockchain tech makes it ideally suited to logistical tasks. Soon, you may be able to ascertain much more information regarding the creation and delivery of your products thanks to these new-age systems emerging.

Fundraising

Blockchain technology has also altered the way in which businesses raise funds. In a traditional corporate crowdfunding strategy such as an IPO, companies must balance between cost-effectiveness and participation. The inability to process smaller transactions meant that for the longest time, companies had to turn away potential investors. Nowadays, blockchain technology enables businesses to easily automate these procedures via smart contracts.

Smart Contracts

Smart Contracts feature preprogrammed protocols that execute when they receive a certain amount of cryptocurrency sent to their address. These contracts live on the blockchain and enable remarkable functionality. For example, in the case of fundraising, a smart contract can automate processes such as the approval of investors and the distribution of funds.

Blockchain Technology Today

You can expect to see further expansion of the blockchain sector in the coming months as more governments and institutions explore its benefits. For now, the blockchain revolution is well underway.
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

The Bitcoin and Blockchain Technology Explained Mining Bitcoin with pencil and paper Bitcoin Cryptocurrency for Beginners Introduction to Blockchain – I (Basics) Coin detection and counting Algorithm using matlab

Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto [email protected] www.bitcoin.org Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main When mining bitcoin, the hashcash algorithm repeatedly hashes the block header while incrementing the counter & extraNonce fields. Incrementing the extraNonce field entails recomputing the merkle tree, as the coinbase transaction is the left most leaf node. The block is also occasionally updated as you are working on it. A BIP is a "Bitcoin improvement proposal" or the format for making changes to Bitcoin. Similar to the relationship between a private and public key, the private key sequence that results from using an HD wallet is defined by a one-way relationship between inputs and outputs of an algorithm. Bitcoin is worth $918 US Dollars (USD). In this paper, we explore the Bitcoin phenomenon on several facets. Section 2 will provide a detailed overview of how Bitcoin works and its underlying cryptographic protocols. Section 3 will contextualize Bitcoin by providing a history of digital currencies as well as a holistic PDF: Bitcoin research prediction algorithm using the location of the Sun. Technical "Below are percentage ups and downs of the BTC(Bitcoin)/USD currency pair during times when the Sun and Mercury are in the same sign and also during times when the Sun and Mercury are in different signs. These statistics go back to 2012.

[index] [25072] [7952] [17070] [28246] [17501] [10633] [14638] [21012] [25505] [24831]

The Bitcoin and Blockchain Technology Explained

Bitcoins are mined using a cryptographic algorithm called SHA-256. This algorithm is simple enough to be done with pencil and paper, as I show in this video. Not surprisingly, this is a thoroughly ... Make sure to benchmark your algorithms to get the most amount of bitcoins. Bitcoin mining is the process of adding transaction records to Bitcoin's public ledger of past transactions or blockchain. ATTENTION: I AM NOT ON TELEGRAM!!! To anyone who is being approached under the scam please report to Telegram. How I got Rich off Bitcoin! We've all been hearing about it. What is Bitcoin? What is ... The math behind cryptocurrencies. Home page: https://www.3blue1brown.com/ Brought to you by you: http://3b1b.co/btc-thanks And by Protocol Labs: https://prot... 24/7 Live Bitcoin Algo Trading on Deribit Exchange (DeriBot) Bitcoin Trading Robots 159 watching. Live now; Language: English Location: United States Restricted Mode: Off

Flag Counter