What is Hash Rate? 3 Things to Know (2020 Updated)

At what rate can mining productivity keep increasing?

Assuming the price doesn’t change (don't think in terms of fiat but actual goods and services), unless fees increase substantially (they are just around 1% of the block reward now: https://bitinfocharts.com/bitcoin/), mining won’t be profitable for some people after the next halving, which is bad for Bitcoin as it decreases difficulty and therefore makes it less safe (so it becomes less valuable, then mining is less profitable, difficulty drops again, price drops again... a vicious circle).
Fees increasing drastically would cause the same effect, it would make using BTC less attractive and drop its value.
Long term, to keep up with block reward decreasing by 50% every 4 years we need a combination of price increasing, fees increasing, mining productivity increasing. The price can’t keep doubling every four years indefinitely. Fees can’t increase much without hurting BTC’s price. So for difficulty to at least stay constant, we need mining productivity (hashes/electricity and other costs) to keep rising at a very high rate.
Assuming BTC rises indefinitely 5% a year, fees and difficulty stay constant, mining productivity would have to increase around 13% a year. How realistic is that?
Edit: After thinking more about the topic, I think I have the answer to my question. And I realize that the way I wrote my question wasn't clear enough.
Simply, if Bitcoin's price (imagine the price is in electricity, the same miners buy) and mining productivity can't keep rising, combined, at 19% a year at some point, there could simply be a consensus to stop dropping the reward or doing so more slowly (say "halving" it once every 8 years). That could happen several decades from now, when inflation is, say, 0.05%. I think Bitcoin users would find reasonable to keep an annual inflation of 0.05% if that rewards miners enough to keep the network safe.
After this I'm even more convinced about Bitcoin's brilliant future and inevitable triumph.
submitted by VSAlpha to Bitcoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Where is Bitcoin Going and When?

Where is Bitcoin Going and When?

The Federal Reserve and the United States government are pumping extreme amounts of money into the economy, already totaling over $484 billion. They are doing so because it already had a goal to inflate the United States Dollar (USD) so that the market can continue to all-time highs. It has always had this goal. They do not care how much inflation goes up by now as we are going into a depression with the potential to totally crash the US economy forever. They believe the only way to save the market from going to zero or negative values is to inflate it so much that it cannot possibly crash that low. Even if the market does not dip that low, inflation serves the interest of powerful people.
The impending crash of the stock market has ramifications for Bitcoin, as, though there is no direct ongoing-correlation between the two, major movements in traditional markets will necessarily affect Bitcoin. According to the Blockchain Center’s Cryptocurrency Correlation Tool, Bitcoin is not correlated with the stock market. However, when major market movements occur, they send ripples throughout the financial ecosystem which necessary affect even ordinarily uncorrelated assets.
Therefore, Bitcoin will reach X price on X date after crashing to a price of X by X date.

Stock Market Crash

The Federal Reserve has caused some serious consternation with their release of ridiculous amounts of money in an attempt to buoy the economy. At face value, it does not seem to have any rationale or logic behind it other than keeping the economy afloat long enough for individuals to profit financially and politically. However, there is an underlying basis to what is going on which is important to understand in order to profit financially.
All markets are functionally price probing systems. They constantly undergo a price-discovery process. In a fiat system, money is an illusory and a fundamentally synthetic instrument with no intrinsic value – similar to Bitcoin. The primary difference between Bitcoin is the underlying technology which provides a slew of benefits that fiat does not. Fiat, however, has an advantage in being able to have the support of powerful nation-states which can use their might to insure the currency’s prosperity.
Traditional stock markets are composed of indices (pl. of index). Indices are non-trading market instruments which are essentially summaries of business values which comprise them. They are continuously recalculated throughout a trading day, and sometimes reflected through tradable instruments such as Exchange Traded Funds or Futures. Indices are weighted by market capitalizations of various businesses.
Price theory essentially states that when a market fails to take out a new low in a given range, it will have an objective to take out the high. When a market fails to take out a new high, it has an objective to make a new low. This is why price-time charts go up and down, as it does this on a second-by-second, minute-by-minute, day-by-day, and even century-by-century basis. Therefore, market indices will always return to some type of bull market as, once a true low is formed, the market will have a price objective to take out a new high outside of its’ given range – which is an all-time high. Instruments can only functionally fall to zero, whereas they can grow infinitely.
So, why inflate the economy so much?
Deflation is disastrous for central banks and markets as it raises the possibility of producing an overall price objective of zero or negative values. Therefore, under a fractional reserve system with a fiat currency managed by a central bank – the goal of the central bank is to depreciate the currency. The dollar is manipulated constantly with the intention of depreciating its’ value.
Central banks have a goal of continued inflated fiat values. They tend to ordinarily contain it at less than ten percent (10%) per annum in order for the psyche of the general populace to slowly adjust price increases. As such, the markets are divorced from any other logic. Economic policy is the maintenance of human egos, not catering to fundamental analysis. Gross Domestic Product (GDP) growth is well-known not to be a measure of actual growth or output. It is a measure of increase in dollars processed. Banks seek to produce raising numbers which make society feel like it is growing economically, making people optimistic. To do so, the currency is inflated, though inflation itself does not actually increase growth. When society is optimistic, it spends and engages in business – resulting in actual growth. It also encourages people to take on credit and debts, creating more fictional fiat.
Inflation is necessary for markets to continue to reach new heights, generating positive emotional responses from the populace, encouraging spending, encouraging debt intake, further inflating the currency, and increasing the sale of government bonds. The fiat system only survives by generating more imaginary money on a regular basis.
Bitcoin investors may profit from this by realizing that stock investors as a whole always stand to profit from the market so long as it is managed by a central bank and does not collapse entirely. If those elements are filled, it has an unending price objective to raise to new heights. It also allows us to realize that this response indicates that the higher-ups believe that the economy could crash in entirety, and it may be wise for investors to have multiple well-thought-out exit strategies.

Economic Analysis of Bitcoin

The reason why the Fed is so aggressively inflating the economy is due to fears that it will collapse forever or never rebound. As such, coupled with a global depression, a huge demand will appear for a reserve currency which is fundamentally different than the previous system. Bitcoin, though a currency or asset, is also a market. It also undergoes a constant price-probing process. Unlike traditional markets, Bitcoin has the exact opposite goal. Bitcoin seeks to appreciate in value and not depreciate. This has a quite different affect in that Bitcoin could potentially become worthless and have a price objective of zero.
Bitcoin was created in 2008 by a now famous mysterious figure known as Satoshi Nakamoto and its’ open source code was released in 2009. It was the first decentralized cryptocurrency to utilize a novel protocol known as the blockchain. Up to one megabyte of data may be sent with each transaction. It is decentralized, anonymous, transparent, easy to set-up, and provides myriad other benefits. Bitcoin is not backed up by anything other than its’ own technology.
Bitcoin is can never be expected to collapse as a framework, even were it to become worthless. The stock market has the potential to collapse in entirety, whereas, as long as the internet exists, Bitcoin will be a functional system with a self-authenticating framework. That capacity to persist regardless of the actual price of Bitcoin and the deflationary nature of Bitcoin means that it has something which fiat does not – inherent value.
Bitcoin is based on a distributed database known as the “blockchain.” Blockchains are essentially decentralized virtual ledger books, replete with pages known as “blocks.” Each page in a ledger is composed of paragraph entries, which are the actual transactions in the block.
Blockchains store information in the form of numerical transactions, which are just numbers. We can consider these numbers digital assets, such as Bitcoin. The data in a blockchain is immutable and recorded only by consensus-based algorithms. Bitcoin is cryptographic and all transactions are direct, without intermediary, peer-to-peer.
Bitcoin does not require trust in a central bank. It requires trust on the technology behind it, which is open-source and may be evaluated by anyone at any time. Furthermore, it is impossible to manipulate as doing so would require all of the nodes in the network to be hacked at once – unlike the stock market which is manipulated by the government and “Market Makers”. Bitcoin is also private in that, though the ledge is openly distributed, it is encrypted. Bitcoin’s blockchain has one of the greatest redundancy and information disaster recovery systems ever developed.
Bitcoin has a distributed governance model in that it is controlled by its’ users. There is no need to trust a payment processor or bank, or even to pay fees to such entities. There are also no third-party fees for transaction processing. As the ledge is immutable and transparent it is never possible to change it – the data on the blockchain is permanent. The system is not easily susceptible to attacks as it is widely distributed. Furthermore, as users of Bitcoin have their private keys assigned to their transactions, they are virtually impossible to fake. No lengthy verification, reconciliation, nor clearing process exists with Bitcoin.
Bitcoin is based on a proof-of-work algorithm. Every transaction on the network has an associated mathetical “puzzle”. Computers known as miners compete to solve the complex cryptographic hash algorithm that comprises that puzzle. The solution is proof that the miner engaged in sufficient work. The puzzle is known as a nonce, a number used only once. There is only one major nonce at a time and it issues 12.5 Bitcoin. Once it is solved, the fact that the nonce has been solved is made public.
A block is mined on average of once every ten minutes. However, the blockchain checks every 2,016,000 minutes (approximately four years) if 201,600 blocks were mined. If it was faster, it increases difficulty by half, thereby deflating Bitcoin. If it was slower, it decreases, thereby inflating Bitcoin. It will continue to do this until zero Bitcoin are issued, projected at the year 2140. On the twelfth of May, 2020, the blockchain will halve the amount of Bitcoin issued when each nonce is guessed. When Bitcoin was first created, fifty were issued per block as a reward to miners. 6.25 BTC will be issued from that point on once each nonce is solved.
Unlike fiat, Bitcoin is a deflationary currency. As BTC becomes scarcer, demand for it will increase, also raising the price. In this, BTC is similar to gold. It is predictable in its’ output, unlike the USD, as it is based on a programmed supply. We can predict BTC’s deflation and inflation almost exactly, if not exactly. Only 21 million BTC will ever be produced, unless the entire network concedes to change the protocol – which is highly unlikely.
Some of the drawbacks to BTC include congestion. At peak congestion, it may take an entire day to process a Bitcoin transaction as only three to five transactions may be processed per second. Receiving priority on a payment may cost up to the equivalent of twenty dollars ($20). Bitcoin mining consumes enough energy in one day to power a single-family home for an entire week.

Trading or Investing?

The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this article, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. In order to determine when the stock market will crash, causing a major decline in BTC price, we will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We are concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets and currencies ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets and instruments rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market or instrument is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The Bitcoin market is open twenty-four-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy. Bitcoin is an asset which an individual can both trade and invest, however this article will be focused on trading due to the wide volatility in BTC prices over the short-term.

Technical Indicator Analysis of Bitcoin

Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. They are also often discounted when it comes to BTC. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
  • Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume for stocks is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. This does not occur with BTC, as it is open twenty-four-seven. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes (peaks and troughs) because of levels of fear. Volume allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation. Volume is steadily decreasing. Lows and highs are reached when volume is lower.
Therefore, due to the relatively high volume on the 12th of March, we can safely determine that a low for BTC was not reached.
  • VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. VIX is essentially useless for BTC as BTC-based options do not exist. It allows us to predict the market low for $SPY, which will have an indirect impact on BTC in the short term, likely leading to the yearly low. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend for the S&P 500 is imminent.
  • RSI (Relative Strength Index): The most important technical indicator, useful for determining highs and lows when time symmetry is not availing itself. Sometimes analysis of RSI can conflict in different time frames, easiest way to use it is when it is at extremes – either under 30 or over 70. Extremes can be used for filtering highs or lows based on time-and-price window calculations. Highly instructive as to major corrective clues and indicative of continued directional movement. Must determine if longer-term RSI values find support at same values as before. It is currently at 73.56.
  • Secondly, RSI may be used as a high or low filter, to observe the level that short-term RSI reaches in counter-trend corrections. Repetitions based on market movements based on RSI determine how long a trade should be held onto. Once a short term RSI reaches an extreme and stay there, the other RSI’s should gradually reach the same extremes. Once all RSI’s are at extreme highs, a trend confirmation should occur and RSI’s should drop to their midpoint.

Trend Definition Analysis of Bitcoin

Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw a downtrend line on the BTC chart, but it is possible to correctly draw an uptrend – indicating that the overall trend is downwards. The only mitigating factor is the impending stock market crash.

Time Symmetry Analysis of Bitcoin

Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will measure it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
  • Yearly Lows (last seven years): 1/1/13, 4/10/14, 1/15/15, 1/17/16, 1/1/17, 12/15/18, 2/6/19
  • Monthly Mode: 1, 1, 1, 1, 2, 4, 12
  • Daily Mode: 1, 1, 6, 10, 15, 15, 17
  • Monthly Lows (for the last year): 3/12/20 (10:00pm), 2/28/20 (7:09am), 1/2/20 (8:09pm), 12/18/19 (8:00am), 11/25/19 (1:00am), 10/24/19 (2:59am), 9/30/19 (2:59am), 8/29,19 (4:00am), 7/17/19 (7:59am), 6/4/19 (5:59pm), 5/1/19 (12:00am), 4/1/19 (12:00am)
  • Daily Lows Mode for those Months: 1, 1, 2, 4, 12, 17, 18, 24, 25, 28, 29, 30
  • Hourly Lows Mode for those Months (Military time): 0100, 0200, 0200, 0400, 0700, 0700, 0800, 1200, 1200, 1700, 2000, 2200
  • Minute Lows Mode for those Months: 00, 00, 00, 00, 00, 00, 09, 09, 59, 59, 59, 59
  • Day of the Week Lows (last twenty-six weeks):
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points
Evaluating the yearly lows, we see that BTC tends to have its lows primarily at the beginning of every year, with a possibility of it being at the end of the year. Following the same methodology, we get the middle of the month as the likeliest day. However, evaluating the monthly lows for the past year, the beginning and end of the month are more likely for lows.
Therefore, we have two primary dates from our histogram.
1/1/21, 1/15/21, and 1/29/21
2:00am, 8:00am, 12:00pm, or 10:00pm
In fact, the high for this year was February the 14th, only thirty days off from our histogram calculations.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is February 9, 2020 – a reasonably accurate depiction of the low for this year (which was on 3/12/20). (Taking only the Armstrong model into account, the next high should be Saturday, April 23, 2022). Therefore, the Armstrong model indicates that we have actually bottomed out for the year!
Bear markets cannot exist in perpetuity whereas bull markets can. Bear markets will eventually have price objectives of zero, whereas bull markets can increase to infinity. It can occur for individual market instruments, but not markets as a whole. Since bull markets are defined by low volatility, they also last longer. Once a bull market is indicated, the trader can remain in a long position until a new high is reached, then switch to shorts. The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of this bear market – roughly speaking. They cannot be shorter than fifteen months for a central-bank controlled market, which does not apply to Bitcoin. (Otherwise, it would continue until Sunday, September 12, 2021.) However, we should expect Bitcoin to experience its’ exponential growth after the stock market re-enters a bull market.
Terry Laundy’s T-Theory implemented by measuring the time of an indicator from peak to trough, then using that to define a future time window. It is similar to an head-and-shoulders pattern in that it is the process of forming the right side from a synthetic technical indicator. If the indicator is making continued lows, then time is recalculated for defining the right side of the T. The date of the market inflection point may be a price or indicator inflection date, so it is not always exactly useful. It is better to make us aware of possible market inflection points, clustered with other data. It gives us an RSI low of May, 9th 2020.
The Bradley Cycle is coupled with volatility allows start dates for campaigns or put options as insurance in portfolios for stocks. However, it is also useful for predicting market moves instead of terminal dates for discretes. Using dates which correspond to discretes, we can see how those dates correspond with changes in VIX.
Therefore, our timeline looks like:
  • 2/14/20 – yearly high ($10372 USD)
  • 3/12/20 – yearly low thus far ($3858 USD)
  • 5/9/20 – T-Theory true yearly low (BTC between 4863 and 3569)
  • 5/26/20 – hashrate difficulty halvening
  • 11/14/20 – stock market low
  • 1/15/21 – yearly low for BTC, around $8528
  • 8/19/21 – end of stock bear market
  • 11/26/21 – eighteen months from halvening, average peak from halvenings (BTC begins rising from $3000 area to above $23,312)
  • 4/23/22 – all-time high
Taken from my blog: http://aliamin.info/2020/
submitted by aibnsamin1 to Bitcoin [link] [comments]

The Need for Financial Technology Literacy

The Need for Financial Technology Literacy

https://preview.redd.it/m24fdyf48f151.jpg?width=1280&format=pjpg&auto=webp&s=5b6d4b2cff422116b29ccf07273c66f3d4629434
At these present times, everything and everyone is adapting to modern technology. From devices, diagnostic equipment, transportation, communication, research, and now to financial transactions — the convenience that the technology has brought us is indeed immeasurable.
We’ve written this article with the intention of letting people realize the importance of adapting to modern technology to alleviate the current financial system, not just in the cryptocurrency field.
The term “Fintech” or financial technology has been gaining more attention, and we believe that it is very important to discuss the need to educate the public on what this really means before we dive into more technical details. By understanding what fintech means, we hope that more people will realize its importance and adopt it in their everyday lives.
What is Financial Technology?
Fintech, a term coined for Financial Technology, is used to define the industries behind the expansion of the financial technology system across the globe. Whether in banking, insurance, mobile payments, and cryptocurrency, the term is widely used to describe the rapidly growing financial system. A lot of fintech businesses or products are created in such a way that they will connect and simplify financial transactions through the use of modern technology.
There is an increase in financial access, and freedom thanks to fintech. It has helped the world change the financial system in numerous ways. Before discovering the possibility of mobile or online banking, people used to line-up in banks just to open an account. Also, e-commerce flourished thanks to fintech. The availability of mobile apps and the internet catering to various services helped not just the consumers but also the businesses to expand their options and business goals.
Fintech and Cryptocurrency
Fintech upgraded the traditional financial transactions. Long gone are the days when people have to keep their money physically or have to visit banks to make transactions. Everything is almost digital. Everything is also almost convenient.
In this age where everything is fast-paced, people always look for “convenience” and “efficiency” in a product and service. This is where cryptocurrency has the most advantage.
The technology that cryptocurrency introduced through Bitcoin showed a profound effect on the Fintech industry. Thanks to the launch of Bitcoin in 2008, it was realized that a decentralized blockchain system is possible, and it can help solve the difficulties people encounter in the traditional financial system. As a form of digital or virtual money that runs in a blockchain, cryptocurrencies help users to manage their own money easily, quickly and securely. Users can make a transaction without the need for any central authority involved. People just need to have a cryptocurrency wallet where they can make crypto transactions.
The Importance of Fintech Literacy
The fintech industry has made a drastic growth in the financial sector over the years. As the world keeps on innovating, people will continuously adapt to changes. The more convenience fintech brings, the more people are inclined to use it. This is why Swipe believes that it is very important for users to understand how to have the right financial behavior in this high-tech world.
People find it easier to store, but at the same time, they also spend money easily with the use of the internet or mobile applications. However, products and services that can easily be bought online make it easier for consumers to develop a habit of impulsive buying. People need to realize that even though fintech helps brings more convenience, the need to control and manage their transactions is extremely important.
As a multi-asset digital wallet, Swipe believes that understanding the ropes of fintech and also cryptocurrencies will lead to better asset management and spending. Having a good grasp of fintech literacy helps the users’ ability to make informed decisions about their financial behaviors. Cryptocurrency rates are very volatile. Though it can be easily bought and spend any time, a crypto user must be knowledgeable enough on when or how to invest or spend his assets.
Fintech will surely dominate the financial sector in the years to come. A user needs to have an open mind to adapt to these changes and learn how to use it properly. Having adequate fintech literacy will surely help a user to have the right attitude and behavior in making financial decisions in a world that is slowly becoming more digital.
---
This blog article is also posted at: https://sw.pe/blogfintechliteracy
submitted by SwipeWallet to Swipe_io [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

Pool fees are likely to increase come Main Net. Tell me I’m wrong.

So I’ve been thinking about the incentive mechanisms for Cardano stake pools as I recently spun up my own, and it occurred to me that it’s likely that pool fees will increase as a function of the total number of pools prescribed by the protocol.

Let’s explore this…

The number of pools is defined by the variable “k”. With the test net, k=100. This means that the protocol designed by IOHK is governed by an ideal number of total staking pools which is now equal to 100. The thing is, we have nearly 1000 stake pools currently operating which is why many of them are having difficulty getting started as the amount of ADA is consolidated in just a few hundred pools and the remaining are competing for their own share. I think this is a good thing btw ... as the network will be the strongest when pools are run as cheaply as possible and at the highest quality. Competition is a good thing. This type of network will benefit all ADA holders as deploying dApps and service onchain will be less expensive than competing chains leading to price appreciation in the underlying asset (i.e. your ADA bags).

We have about 11.5B ADA being staked with the test net which means that the saturation point of each pool is roughly 115M ADA. If a pool has *more* than 115M ADA, then those staking are penalized and earn less rewards. 115M ADA is the pool’s saturation limit and no further rewards are generated for stake holders when a pool’s total stake exceeds this amount.

In prior literature produced by IOHK and in Charles’ AMA’s it has been posited that there will eventually be 1000 total stake pools, or 10x the value of "k" we have currently. Charles has said on multiple occasions that Cardano will be “100 times more decentralized than Bitcoin”. He is referring to the number of total nodes running the network as defined by “k”.

If the main net is launched with k=1000, then the saturation threshold is *reduced* by 10x as well, meaning that a pool with 115M stake currently would have to reduce to 11.5M in order to produce fair rewards for all those staking. This will push people out of their current pool and into unsaturated pools. This ALSO means that pool operators will see a 10x reduction in earnings as they are paid only on total ADA staked multiplied by their fee.

We don’t know how IOHK will handle this on the protocol level; perhaps k is increased gradually, or perhaps it’s moved directly to 1000 once main net is launched.

What seems clear to me, however, is that there is a relationship between the quantity of nodes and the incentives for operators to run those nodes. Remember that ideally for each node there is a single operator (this is better for decentralization vs. operators running multiple stake pools as we’ve seen in the test net), and so 1000 total nodes means that incentives for the node operator drop by 10x. Will 1% nodes still be able to clear operational costs when their earnings drop to 0.1%?

I think pool operators will have to raise their fees as the value of k increases. This is not to make more money, but simply to stay above the water line! This suggests that the breadth of decentralization is not without cost; it manifests as an incentive balance between the node operator's overhead costs and stake holder's fee tolerance. The cost of an increasingly decentralized network is thus transferred to the stake holders themselves in the form of increased fees as nodes can not be run for free.

What do you think?

Ticker: "SUSHI" | 3% fees and zero cost per epoch | www.sushipool.io
submitted by DamonAndTheSea to cardano [link] [comments]

Why use your own full node? Answered by Pieter Wuille

One of Bitcoin's strengths - the most important in my opinion even - is the low degree of trust you need in others.
If you use a full node for your incoming transactions, you know that there was no cheating anytime in the history of your coins:
... with one exception: because there is a need to pick a winner in presence of multiple competing valid versions of the ledger, (a majority of) miners have the authority to pick the version of the block chain that wins. This means their power is limited to choosing the order in which otherwise valid transactions occur, up to and including the right to delay them indefinitely. But they cannot make invalid transaction look valid to a full node.
If you are not running a full node, the amount of trust you're placing in others increases.
SPV nodes (such as some mobile clients, and Multibit) place a blind trust in the majority of miners, without checking validity of the blockchain they produce. It still requires a majority of miners to mislead an SPV node, but they can make it believe anything (including "You received 10000000 BTC!"). The reason why this does not happen is because full nodes would not accept such blocks, and assuming a large portion of the ecosystem does rely on full nodes, miners who do this would not see their blocks accepted by the larger economy, resulting in them wasting money.
Centralized services (most webwallets) make the user trust whatever the site says. They can claim anything.
So I hope you now see the importance of full nodes in this model. If you run a full node somewhere on the network, and nobody looks at the transactions it validates, it is indeed contributing to the network, but it is not helping with the reduction of trust.
Look at it another way: if only a few large players in the Bitcoin ecosystem were running full nodes, it only requires a malicious intent, or an attack/threat against them, to change the system's rules, as nobody else is validating.
Doing transactions in the Bitcoin ecosystem helps the Bitcoin currency. Running a full node helps the network. Using a full node helps you and the ecosystem reduce the need for trust.
https://www.reddit.com/BitcoinBeginners/comments/3eq3y7/full_node_question/ctk4lnd/
Adding to that answer myself:
Running (and using) your own full node gives you the benefit of increased privacy, because you don't leak information about your UTXOs to the default node of your wallet, which can link your UTXOs together, perhaps even link them to your real world identity.
There are different ways how to set up a node (from simply installing the Bitcoin Core software on your computer to getting a plug'n'play solution such as Casa or Nodl), but to connect a (hardware) wallet to it is a little more tricky for now.
One of the projects I frequently recommend myself is https://stadicus.github.io/RaspiBolt/. It's somewhat cheap (~$150 for hardware, as compared to other plug'n'play nodes which are around $300) but can run 24/7 and includes guides how to set up Tor on the device, and how to use your hardware wallet with the node.
submitted by TheGreatMuffin to Bitcoin [link] [comments]

Use of Blockchain Technologies in the Field of Labor

Use of Blockchain Technologies in the Field of Labor

https://preview.redd.it/vvyaycga09g41.jpg?width=1275&format=pjpg&auto=webp&s=e26e7f5f125e3a7e068a1a29e05989eb1c33822e
The issues of using blockchain technologies, conducting ICOs and the use of cryptocurrencies are relevant not only for the field of law, but also for political, economic, other sciences, and are also of interest to ordinary citizens.
Labor law does not remain aloof from the development of technology, as well as globalization processes, which necessitates the conduct of relevant scientific research.
For a short time, judicial practice is changing, the approaches of state bodies in matters of cryptocurrency transactions, their theft, seizure, etc. At the same time, electronic technologies are acquiring special significance in the field of labor law. Workflow experiments, discussions about the need to introduce workbooks, electronic sick-lists, and the work of remote workers — information technologies have already found application in all these areas.
In addition, at the present time, given the globalization processes, there is a need to increase pay opportunities. It is no accident that in some countries the possibilities of a monetary form of remuneration have expanded by assuming, under certain conditions, remuneration in the currency of other states. Based on this provision, the question arises about the practical feasibility of using cryptocurrency workers as wages, as well as the use of blockchain technologies in the world of work.
Blockchain is a technology of distributed databases (registries) based on a constantly renewed chain of records. The name Cryptocurrency, meaning “cryptocurrency”, appeared in Forbes magazine in 2011. However, cryptocurrencies themselves would not have been so widespread without a blockchain system that provides all the necessary elements for circulation. Cryptocurrency is a special kind of electronic means of payment. Strictly speaking, this is a mathematical code. It is called so because of the use of cryptographic elements in the circulation of this digital money, namely, an electronic signature.
https://preview.redd.it/7s4qq1s949g41.jpg?width=877&format=pjpg&auto=webp&s=2bdb9dbb0a4bde88e302047c55b7207e1f66d347

The popularity of cryptocurrencies is due to a number of factors that directly affect labor law.

Such electronic money is universal regardless of the place of work, the legal form of the employer or the citizenship of the employee. Cryptocurrencies are not tied to a particular state or bank. This decentralization is one of their main advantages, which encourages many countries to start using cryptographic currencies for international payments and as reserve currencies. Bitcoin operations are increasingly being conducted on global financial markets. In the future, this factor allows creating a single world labor market, where remuneration for labor will be paid in a single form and currency, without linking this money to specific countries and existing systems. This will significantly simplify emerging issues and difficulties in relations associated with employees located abroad. This eliminates the need for multiple transfers of funds and the exchange of one currency for another.
From this point of view, I would like to draw attention to the main problems associated with the use of cryptocurrencies in remuneration.
One of the most acute problems is associated with tax legislation. Incomes of employees are taxed, while the employer, as a tax agent, performs this function for the employee. A distinctive feature of all operations with cryptocurrencies is their anonymity and lack of control. All operations occur instantly since they are not controlled by anyone and are not delayed for checks. Accordingly, the tax authorities do not know the number of funds received by the employee for the performance of his labor function, cannot personify the taxpayer and his tax burden. Similarly, the employer and employee are able to evade the payment of taxes, which is a violation of the law.
It is also important for the legislator to determine which form of labor remuneration should include cryptocurrencies. When assigned to cash, there are fewer problems with the payment and regulation of these funds, since in accordance with the above article, payments, in this case, can be made in full and the employer is not threatened with sanctions for violation of labor legislation. If you equate cryptocurrency payments to a non-monetary form of payment, then the employer has the right to pay in this way no more than 20% of the employee’s total salary per month. However, there is currently a variety of cryptocurrencies, some of which are notable for the instability and difficulty of selling by ordinary users. A wide range of cryptocurrencies at the same time can be both a plus and a minus in the issue of their use as a form of salary. The employer and employee can choose the most convenient currency for them to transfer funds. But such a variety can and can significantly interfere with the development of the institution of cryptocurrency payroll.

It should be noted that in many countries, judicial practice recognizes cryptocurrencies as property.

The largest online resources specializing in the purchase and sale of electronic means of payment, there are about 1,500 types of various cryptocurrencies. And this number will only increase over time, as large companies of completely different industries, often not even related to technology and innovation, create their own cryptocurrencies.
Also, the difficulty in paying wages will be the instability of the cryptocurrency rate. Since one of the constituent parts of wages is salary, which means a fixed wage for an employee for performing labor (official) duties of a certain complexity for a calendar month without taking into account compensation, incentive, and social benefits. Accordingly, this component of wages cannot be changed according to the norms of labor legislation. And the cryptocurrency exchange rate for a given period of time is notable for its instability.
In this case, it is necessary to specify in the employment contract with the employee the method of calculating his salary. The first way is to fix the number of wages in a specific number of cryptocurrency units, regardless of their value. This method is unlikely and quite complicated for both employers and workers themselves, and for control and tax authorities.
A simpler way is to pay a salary in cryptocurrency with reference to a specific amount.
It is important to take into account the fact that, regardless of the concept chosen by the employer, the employee can suffer the most, since jumps in the cryptocurrency rate are possible in both cases, and it is the employee’s turnover, sale or personal use of electronic funds that will fall. The position in which the employee will be paid in electronic currency only part of the salary, and the remaining funds will be in the format of the usual money for everyone, will not be completely clear. Therefore, a potential user of cryptocurrency funds and a potential participant in their turnover can, unexpectedly for themselves and all those around them, suffer enormous losses and get rich quite unexpectedly.
The issue of using electronic money is of interest to employers in many countries. The development of regulations governing the circulation of cryptocurrency funds between an employer and an employee has begun almost around the world since the rise in the value of popular currencies.
Since April 1, 2017, the concept of “virtual currencies” has been introduced into the legislation of Japan, and cryptocurrencies have become a fully legalized means of payment. This event could not but affect the employment relationship. So, at the end of 2018, GMO Corporation planned to transfer about 5 thousand of its employees to the cryptocurrency form of payment. (Bitcoin.com “Japanese Internet Giant GMO Offers to Pay 4 700+ Employees in Bitcoin”).
https://preview.redd.it/6a3rakkd49g41.jpg?width=1229&format=pjpg&auto=webp&s=145524c16558a822495912e7cf6756d51ffd7dcd
The United States of America, as the state with the largest number of cryptocurrency users, is also actively developing relevant legislation. US authorities have created a favorable atmosphere for the use of cryptocurrencies. This is also confirmed by studies in the field of labor relations and the labor market. According to a recent release from Bitwage, it was revealed that 10.5% of the companies surveyed currently pay employees, at least in part, in bitcoins. Across the country, about 20 thousand employees are registered in this program, who, accordingly, receive wages in cryptocurrency funds (Legal Ramifications of Paying Employees with Cryptocurrency).
https://preview.redd.it/c077826i49g41.jpg?width=986&format=pjpg&auto=webp&s=6c5cbd2ede96c15b056afab7ac9ec859eff2801f
In order to ensure that the employee and the employer do not hide from taxation when paying wages with cryptocurrencies, some states create entire committees within financial ministries whose main function is to control cash flows and record the tax base of a particular subject of labor relations. One of these countries is Singapore, which in recent years has become the economic center of the world since most projects designed for worldwide use are tested here. Already in 2014, the Monetary Authority of Singapore announced the beginning of the process of legislative regulation of all operations with cryptocurrencies, including those related to labor relations. This body will regulate the process of payment of wages to the employee in this format all stages of the currency movement: from entering the employer company to paying the employee for his own purchases and services, thereby ensuring the security of cryptocurrency transactions and in every possible way helping employees quickly and safely enter the new payment system (Putting Singapore’s Dollar On Blockchain May Prove It’s The Most Crypto-Friendly Place On Earth).
https://preview.redd.it/8vzcundl49g41.jpg?width=801&format=pjpg&auto=webp&s=d12e2410fe85254e9aa26e848f2a3e919fdceaf2

In order for cryptocurrencies to become one of the forms of remuneration, it is necessary first of all to solve the main problems that impede the full use of electronic means in labor relations.

The paramount task is the normative consolidation of all aspects related to the circulation of such financial resources. The assignment of electronic means of payment to cash will greatly simplify the mechanism for regulating these relations, as this will avoid introducing a large number of changes to existing legislation.
It is logical to solve the problem of taxation after legislative determination and consolidation, using Singaporean experience, creating a specially authorized committee in the Federal Tax Services. This will significantly save energy and money while deciding the whole layer in the use of cryptocurrency funds.
The existing mechanisms for accounting for taxable items and calculating the amount of legally established taxes and fees will not differ much from the existing ones. Therefore, from this side, the introduction of cryptocurrencies will not greatly complicate or change the current system.
The problem of a large number of different cryptocurrencies and their changing value can be solved in several ways. This may be the choice of one cryptocurrency, not necessarily Bitcoin, from among the existing ones. This decision will not create potential difficulties since a well-chosen currency by specialists at the time of consolidation will already be functioning for a long time, showing the real rate without sharp jumps, which will protect workers from depreciation situations and the inability to use their funds.
As for other blockchain technologies, it seems that the principles of smart contracts can be applied to the work of remote workers.
There is currently no established definition of smart contracts. In the most general form, you can define a smart contract as a contract with the automatic fulfillment of certain conditions. This automatic system will simplify the control of the employer over the employee.
In the case of a remote employee, it is the control by the employer that will be, on the one hand, a motivating factor in compliance with labor discipline, and on the other hand, a way to minimize the risks of the employer when bringing the remote employee to disciplinary liability. The remoteness of the employee from the employer should not become an insurmountable obstacle to the implementation of the above control.
Smart contracts will facilitate the interaction of the employee and the employer, simplify the control mechanism.
Thus, competent legislative consolidation and integration of blockchain technologies into the existing financial system are not an insoluble issue. If you take this seriously, the problem can be solved in a fairly short time, since examples of successful incorporation of electronic currencies into the economic scheme in some countries are very common.

Therefore, the question of the cryptocurrency form of remuneration is becoming very real and having good prospects in the near future, as well as the use of other blockchain technologies in the world of work.

Material developed by IMBA-Exchange
submitted by IMBA-Exchange to u/IMBA-Exchange [link] [comments]

Bitcoin Mining Difficulty Makes Biggest Jump in 29 Months First 2018 Bitcoin Difficulty Increase! How bad is it? Bitcoin’s mining difficulty just increased by 14.9% biggest increase in two years+. (r/Bitcoin #493) BITCOIN Mining Difficulty Increases - Grayscale BTC Trust - Goldman Sachs Crypto Team - Poloniex Global Market Panic  PlusToken Scammers Dumping Bitcoin  Difficulty Increase As Halving Looms

The Bitcoin network difficulty is the measure of how difficult it is to find a new block compared to the easiest it can ever be. It is recalculated every 2016 blocks to a value such that the previous 2016 blocks would have been generated in exactly two weeks had everyone been mining at this difficulty. Bitcoin can be used to pay online and in physical stores just like any other form of money. Bitcoins can also be exchanged in physical form such as the Denarium coins, but paying with a mobile phone usually remains more convenient. Bitcoin balances are stored in a large distributed network, and they cannot be fraudulently altered by anybody. The Bitcoin mining difficulty increase in the third and fourth quarters of the year are estimated to have a five percent (5%) increased difficulty at the least. Thus the difficulty for mining will amplify almost fourteen and three-quarter percent (14.74%) times, in accordance with the conservative predictions. The difficulty can increase or decrease depending on whether it took less or more than 2 weeks to find 2016 blocks. Generally, the difficulty will decrease after the network hashrate drops. If the correction factor is greater than 4 (or less than 1/4), then 4 or 1/4 are used instead, to prevent the change to be too abrupt. Mining. Bitcoin mining is the process of making computer hardware do mathematical calculations for the Bitcoin network to confirm transactions and increase security. As a reward for their services, Bitcoin miners can collect transaction fees for the transactions they confirm, along with newly created bitcoins.

[index] [18253] [22059] [6547] [26303] [30878] [8439] [5805] [17026] [24690] [19174]

Bitcoin Mining Difficulty Makes Biggest Jump in 29 Months

Bitcoin is currently 140% more profitable to mine because of the difficulty increase that happened to Bitcoin Cash. Will you continue to mine Bitcoin Cash? Get 3% off all Genesis Mining contracts ... Download and watch How Much Will Bitcoin Difficulty Increase HD high quality mp4 3gp 144p 320p 720p 1080p videos to your phone free What is Bitcoin Mining Difficulty Bitcoin Mining Guide - Getting ... BITCOIN Mining Difficulty Increases - Grayscale BTC Trust - Goldman Sachs Crypto Team - Poloniex ... Increase Bitcoin Mining Profits 2019 and AVOID ASIC Antminer Viruses ... The 14.95% rise is the biggest difficulty jump since January 2018, which saw a larger spike on the back of the 2017 crypto market bull run, data compiled by BTC.com shows. Bitcoin’s mining difficulty just increased by 14.9% biggest increase in two years+. (r/Bitcoin #493) at BitcoinJake09 ... Bitcoin’s mining difficulty just increased by 14.9%—biggest ...

Flag Counter